Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference15 articles.
1. Alamri, B., Suzuki, T., Khan, L.A.: Caristi’s fixed point theorem and Subrahmanyam’s fixed point theorem in $$\nu $$-generalized metric spaces. J. Funct. Spaces, Art. ID 709391 (2015)
2. Branciari, A.: A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 57, 31–37 (2000)
3. Dung, N.V., Hang, V.T.L.: On the metrization problem of $$\nu $$-generalized metric spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM. (2017).
https://doi.org/10.1007/s13398-017-0425-4
4. Kumam, P., Dung, N.V.: Some remarks on generalized metric spaces of Branciari. Sarajev. J. Math. 10, 209–219 (2014)
5. Ramabhadra Sarma, I., Madhusudana Rao, J., Rao, S.S.: Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2, 180–182 (2009)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Survey on Branciari Metric Spaces;Communications in Mathematics and Applications;2023-09-18
2. A new approach to fixed point theorems in compact 2-generalized metric spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2021-01
3. A Survey on Interpolative and Hybrid Contractions;Mathematical Analysis in Interdisciplinary Research;2021
4. Hybrid Contractions on Branciari Type Distance Spaces;Mathematics;2019-10-19
5. The metrization of rectangular b-metric spaces;Topology and its Applications;2019-07