Abstract
AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$
Δ
(
Δ
u
(
k
-
1
)
p
-
2
Δ
u
(
k
-
1
)
)
+
a
(
k
)
u
(
k
)
p
-
2
u
(
k
)
=
0
with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference32 articles.
1. Agarwal, R.P., Çetin, E., Özbekler, A.: Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111(1), 231–246 (2017)
2. Agarwal, R.P., Denk Oğuz, A., Özbekler, A.: Abdullah Lyapunov-type inequalities for Lidstone boundary value problems on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), 9 (2020) (Paper No. 98)
3. Agarwal, R.P., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales, p. x+256. Springer, Cham (2014)
4. Bohner, M., Clark, S., Ridenhour, J.: Lyapunov inequalities for time scales. J. Inequal. Appl. 7(1), 61–67 (2002)
5. Bohner, M., Peterson, A.C.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Basel (2001)