Abstract
AbstractWe discuss two problems concerning the class Eberlein compacta, i.e., weakly compact subspaces of Banach spaces. The first one deals with preservation of some classes of scattered Eberlein compacta under continuous images. The second one concerns the known problem of the existence of nonmetrizable compact spaces without nonmetrizable zero-dimensional closed subspaces. We show that the existence of such Eberlein compacta is consistent with . We also show that it is consistent with that each Eberlein compact space of weight $$> \omega _1$$
>
ω
1
contains a nonmetrizable closed zero-dimensional subspace.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference18 articles.
1. Avilés, A.: Countable products of spaces of finite sets. Fund. Math. 186, 147–159 (2005)
2. Bartoszyński, T., Judah, H.: Set Theory. On the Structure of the Real Line. A K Peters Ltd, Wellesley (1995)
3. Bell, M.: A Ramsey theorem for polyadic spaces. Fund. Math. 150, 189–195 (1996)
4. Bell, M., Marciszewski, W.: On scattered Eberlein compact spaces. Isr. J. Math. 158, 217–224 (2007)
5. Dow, A., Pearl, E.: Homogeneity in powers of zero-dimensional first-countable spaces. Proc. Am. Math. Soc. 125, 2503–2510 (1997)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Musing on Kunen's compact L-space;Topology and its Applications;2023-01
2. Abundance of independent sequences in compact spaces and Boolean algebras;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2022-03-31