Abstract
Abstract$$L_p$$
L
p
Brunn–Minkowski type inequalities for the lattice point enumerator $$\mathrm {G}_n(\cdot )$$
G
n
(
·
)
are shown, $$p\ge 1$$
p
≥
1
, both in a geometrical and in a functional setting. In particular, we prove that $$\begin{aligned}\mathrm {G}_n\bigl ((1-\lambda )\cdot K +_p \lambda \cdot L + (-1,1)^n\bigr )^{p/n}\ge (1-\lambda )\mathrm {G}_n(K)^{p/n}+\lambda \mathrm {G}_n(L)^{p/n} \end{aligned}$$
G
n
(
(
1
-
λ
)
·
K
+
p
λ
·
L
+
(
-
1
,
1
)
n
)
p
/
n
≥
(
1
-
λ
)
G
n
(
K
)
p
/
n
+
λ
G
n
(
L
)
p
/
n
for any $$K, L\subset \mathbb {R}^n$$
K
,
L
⊂
R
n
bounded sets with integer points and all $$\lambda \in (0,1)$$
λ
∈
(
0
,
1
)
. We also show that these new discrete analogues (for $$\mathrm {G}_n(\cdot )$$
G
n
(
·
)
) imply the corresponding results concerning the Lebesgue measure.
Funder
Ministerio de Ciencia e Innovación
Fundación Séneca
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献