Abstract
AbstractWe prove that each Borel function$$V : \Omega \rightarrow [{-\infty }, +\infty ]$$V:Ω→[-∞,+∞]defined on an open subset$$\Omega \subset {\mathbb R}^{N}$$Ω⊂RNinduces a decomposition$$\Omega = S \cup \bigcup _{i} D_{i}$$Ω=S∪⋃iDisuch that every function in$$W^{1,2}_{0}(\Omega ) \cap L^{2}(\Omega ; V^{+} \,\mathrm {d}x)$$W01,2(Ω)∩L2(Ω;V+dx)is zero almost everywhere onSand existence of nonnegative supersolutions of$$-\Delta + V$$-Δ+Von each component$$D_{i}$$Diyields nonnegativity of the associated quadratic form$$ \int _{D_{i}} (|\nabla \xi |^2+V\xi ^2). $$∫Di(|∇ξ|2+Vξ2).
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference29 articles.
1. Schrödinger operators (Como, 1984), Lecture Notes in Mathematics;S Agmon,1984
2. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25(1–2), 217–237 (1998). (Dedicated to Ennio De Giorgi)
3. Brezis, H., Ponce, A.C.: Kato’s inequality when $$\Delta {u}$$ is a measure. C. R. Math. Acad. Sci. Paris 338(8), 599–604 (2004)
4. Brezis, H., Ponce, A.C.: Kato’s inequality up to the boundary. Commun. Contemp. Math. 10(6), 1217–1241 (2008)
5. Brezis, H., Vázquez, J.L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10(2), 443–469 (1997)