Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference31 articles.
1. Albkwre, G.M., Ciesielski, K.C.: Maximal lineability of several subclasses of Darboux-like maps on $${\mathbb{R}}$$. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116(1), 24 (2022). https://doi.org/10.1007/s13398-021-01169-2
2. Albkwre, G.M., Ciesielski, K.C.: $$\mathfrak{c}$$-lineability: a general method and its application to Darboux-like maps. J. Math. Anal. Appl. (2022). https://doi.org/10.1016/j.jmaa.2021.125611
3. Albkwre, G.M., Ciesielski, K.C., Wojciechowski, J.: Lineability of the functions that are Sierpiński-Zygmund, Darboux, but not connectivity. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(3), 145 (2020). https://doi.org/10.1007/s13398-020-00881-9
4. Albkwre, G., Ciesielski, K.C., Wojciechowski, J.: $$\mathfrak{c}^{+}$$-lineability of the class of Darboux maps with the strong Cantor intermediate value property which are not connectivity. Top. Proc. 60, 127–134 (2022)
5. Araújo, G., Bernal-González, L., Muñoz-Fernández, G.A., Prado-Bassas, J.A., Seoane-Sepúlveda, J.B.: Lineability in sequence and function spaces. Stud. Math. 237(2), 119–136 (2017). https://doi.org/10.4064/sm8358-10-2016