Abstract
AbstractWe prove the existence of free objects in certain subcategories of Banach lattices, including p-convex Banach lattices, Banach lattices with upper p-estimates, and AM-spaces. From this we immediately deduce that projectively universal objects exist in each of these subcategories, extending results of Leung, Li, Oikhberg and Tursi (Israel J. Math. 2019). In the p-convex and AM-space cases, we are able to explicitly identify the norms of the free Banach lattices, and we conclude by investigating the structure of these norms in connection with nonlinear p-summing maps.
Funder
Agencia Estatal de Investigación
Ministerio de Ciencia, Innovación y Universidades
Consejo Superior de Investigaciones Científicas
Fundación Masaveu
Fundación La Caixa
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference18 articles.
1. Albiac, F., Kalton, N.J.: Topics in Banach Space Theory, Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)
2. Aliprantis, C.D., Burkinshaw, O.: Locally Solid Riesz Spaces with Applications to Economics, 2nd edn. AMS, Providence, RI (2003)
3. Aliprantis, C.D., Burkinshaw, O.: Positive operators, Springer, Dordrecht, 2006, Reprint of the 1985 original
4. Avilés, A., Martínez-Cervantes, G., Rodríguez Abellán, J.D.: On projective Banach lattices of the form $$C(K)$$ and $${{\rm FBL}}[E]$$, J. Math. Anal. Appl. 489, 124129 (2020)
5. Avilés, A., Martínez-Cervantes, G., Rodríguez Abellán, J.D.: On the Banach lattice $$c_0$$. Rev. Mat. Complut. 34, 203–213 (2021)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献