Author:
van der Weele M. C.,Fokas A. S.
Abstract
AbstractStarting from the 3-wave interaction equations in 2+1 dimensions (i.e., two space dimensions and one time dimension), we complexify the independent variables, thus doubling the number of real variables, and hence we work in 4+2 dimensions: $$x_1$$
x
1
, $$x_2$$
x
2
, $$y_1$$
y
1
, $$y_2$$
y
2
and $$t_1$$
t
1
, $$t_2$$
t
2
. In this paper we solve the initial value problem of the 3-wave interaction equations in 4+2 dimensions.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Analysis
Reference32 articles.
1. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)
2. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21(5), 467–490 (1968)
3. Fokas, A.S.: Lax pairs: a novel type of separability. Inverse Probl. 25, 123007 (2009)
4. Zakharov, V.E., Shabat, A.B.: Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media. Sov. J. Exp. Theor. Phys. 34, 62–69 (1972)
5. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献