Near-Circularity in Capacity and Maximally Convergent Polynomials

Author:

Blatt Hans-Peter

Abstract

AbstractIf f is a power series with radius R of convergence, $$R > 1$$ R > 1 , it is well-known that the method of Carathéodory–Fejér constructs polynomial approximations of f on the closed unit disk which show the typical phenomenon of near-circularity on the unit circle. Let E be compact and connected and let f be holomorphic on E. If $$\left\{ p_n\right\} _{n\in \mathbb {N}}$$ p n n N is a sequence of polynomials converging maximally to f on E, it is shown that the modulus of the error functions $$f-p_n$$ f - p n is asymptotically constant in capacity on level lines of the Green’s function $$g_\Omega (z,\infty )$$ g Ω ( z , ) of the complement $$\Omega $$ Ω of E in $$\overline{\mathbb {C}}$$ C ¯ with pole at infinity, thereby reflecting a type of near-circularity, but without gaining knowledge of the winding numbers of the error curves with respect to the point 0.

Funder

Katholische Universität Eichstätt-Ingolstadt

Publisher

Springer Science and Business Media LLC

Reference13 articles.

1. Blatt, H.-P.: Near circularity and zeros of the error function for Chebyshev approximation on a disk. Approximation Theory and its Applications, vol. 2. Huazhong University of Science and Technology Press, Wuhan, pp. 65–80 (1986)

2. Blatt, H.-P.: Maximally Convergent Rational Approximants of Meromorphic Functions, Banach Center Publications, vol. 107, pp. 63–78. Institute of Mathematics, Polish Academy of Sciences, Warszawa (2015)

3. Goluzin, G.M.: Geometric Theory of Functions of a Complex Variable, Translations of the AMS, vol. 26 (1969)

4. Hollenhorst, M.: Nichtlineare Verfahren bei der Polynomapproximation, Dissertation, Universität Erlangen-Nürnberg (1976)

5. Hollenhorst, M.: Error estimates for the Carathéodory-Féjer method in polynomial approximation. In: Buhmann, M.D., Mache, D.H. (eds.) Advanced Problems in Constructive Approximation, International Series of Numerical Mathematics, vol. 142, pp. 63–78. Birkhäuser Verlag, Basel (2002)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction to: Near-Circularity in Capacity and Maximally Convergent Polynomials;Computational Methods and Function Theory;2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3