Deficient Values of Solutions of Linear Differential Equations

Author:

Gundersen Gary G.,Heittokangas Janne,Wen Zhi-Tao

Abstract

AbstractDifferential equations of the form $$f'' + A(z)f' + B(z)f = 0$$ f + A ( z ) f + B ( z ) f = 0 (*) are considered, where A(z) and $$B(z) \not \equiv 0$$ B ( z ) 0 are entire functions. The Lindelöf function is used to show that for any $$\rho \in (1/2, \infty )$$ ρ ( 1 / 2 , ) , there exists an equation of the form (*) which possesses a solution f with a Nevanlinna deficient value at 0 satisfying $$\rho =\rho (f)\ge \rho (A)\ge \rho (B)$$ ρ = ρ ( f ) ρ ( A ) ρ ( B ) , where $$\rho (h)$$ ρ ( h ) denotes the order of an entire function h. It is known that such an example cannot exist when $$\rho \le 1/2$$ ρ 1 / 2 . For smaller growth functions, a geometrical modification of an example of Anderson and Clunie is used to show that for any $$\rho \in (2, \infty )$$ ρ ( 2 , ) , there exists an equation of the form (*) which possesses a solution f with a Valiron deficient value at 0 satisfying $$\rho =\rho _{\log }(f)\ge \rho _{\log }(A)\ge \rho _{\log }(B)$$ ρ = ρ log ( f ) ρ log ( A ) ρ log ( B ) , where $$\rho _{\log }(h)$$ ρ log ( h ) denotes the logarithmic order of an entire function h. This result is essentially sharp. In both proofs, the separation of the zeros of the indicated solution plays a key role. Observations on the deficient values of solutions of linear differential equations are also given, which include a discussion of Wittich’s theorem on Nevanlinna deficient values, a modified Wittich theorem for Valiron deficient values, consequences of Gol’dberg’s theorem, and examples to illustrate possibilities that can occur.

Funder

University of Eastern Finland (UEF) including Kuopio University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3