1. Ahlfors, L.V.: Complex Analysis. McGraw-Hill, New York (1953)
2. Berg, L., Meinardus, G.: Functional equations connected with the Collatz problem. Results Math. 25, 1–12 (1994)
3. Berg, L., Meinardus, G.: The $$3n+1$$ 3 n + 1 Collatz problem and functional equations. Rostock. Math. Kolloq. 48, 11–18 (1995)
4. Berg, L., Opfer, G.: An analytic approach to the Collatz $$3n+1$$ 3 n + 1 problem for negative start values with an appendix of tables. Hamburger Beiträge zur Angewandten Mathematik (2012). http://preprint.math.uni-hamburg.de/public/papers/hbam/hbam2012-11.pdf
5. Böhm, C., Sontacchi, G.: On the existence of cycles of given length in integer sequences like $$x_{n+1}=x_n/2$$ x n + 1 = x n / 2 if $$x_n$$ x n even, and $$x_{n+1}=3x_{n}+1$$ x n + 1 = 3 x n + 1 otherwise. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8) Mat. Appl. Vol. LXIV (1978), pp. 260–264