1. Michel, L.: Points critiques des fonctions invariants sur uneG-varieté,CR Acad. Sci. Paris A 272, 433 (1971).
2. Michel, L.: Nonlinear group action. Smooth action of compact Lie groups on manifolds, in R.N. Sen and C. Weil (eds),Statistical Mechanics and Field Theory, Israel University Press, Jerusalem, 1971; Michel, L.: Symmetry defects and broken symmetry. Configurations. Hidden symmetry,Rev. Modern Phys. 52, 617 (1980); Michel L. and Radicati, L.: Properties of the breaking of hadronic internal symmetry,Ann. Phys. NY 66, 758 (1971); Michel, L. and Radicati, L.: The geometry of the octet,Ann. Inst. H. Poincaré 18, 185 (1973); Michel, L. and Radicati, L.: Breaking of the SU3 × SU3 symmetry in hadronic physics, in M. Conversi (ed.),Evolution of Particle Physics, Academic Press, London, 1971; Cabibbo, N. and Maiani, L.: Weak interactions and the breaking of hadronic symmetry, in M. Conversi (ed.),Evolution of Particle Physics, Academic Press, London, 1971.
3. Abud, M. and Sartori, G.: The geometry of spontaneous symmetry breaking,Ann. Phys. 150, 307 (1983); Sartori, G. and Talamini, V.:Comm. Math. Phys. 139, 559 (1991); Sartori, G.: Geometric invariant theory: A model-independent approach to spontaneous symmetry and/or supersymmetry breaking,Riv. Nuovo Cim. 14 (11), (1992).
4. Palais, R. S.: The principle of symmetric criticality,Comm. Math. Phys. 69, 19 (1979); Palais, R. S.: Applications of the symmetric criticality principle in mathematical physics and differential geometry, in Gu Chaohao (ed),Proc. 1981 Shangai Symp. Differential Geometry and Differential Equations, Science Press, Beijing, 1984.
5. Gaeta, G.: Michel theorem and critical orbits for gauge functionals,Helv. Phys. Acta 65, 622 (1992); Gaeta, G.: Critical sections of gauge functionals: a symmetry approach,Lett. Math. Phys. 28 1 (1993).