Chosen-ciphertext secure code-based threshold public key encryptions with short ciphertext

Author:

Takahashi Kota,Hashimoto KeitaroORCID,Ogata WakahaORCID

Abstract

AbstractThreshold public-key encryption (threshold PKE) has various useful applications. A lot of threshold PKE schemes are proposed based on RSA, Diffie–Hellman and lattice, but to the best of our knowledge, code-based threshold PKEs have not been proposed. In this paper, we provide three IND-CCA secure code-based threshold PKE schemes. The first scheme is the concrete instantiation of Dodis–Katz conversion (Dodis and Katz, TCC’05) that converts an IND-CCA secure PKE into an IND-CCA secure threshold PKE using parallel encryption and a signature scheme. This approach provides non-interactive threshold decryption, but ciphertexts are large (about 16 kilobytes for 128-bit security) due to long code-based signatures even in the state-of-the-art one. The second scheme is a new parallel encryption-based construction without signature schemes. Unlike the Dodis–Katz conversion, our parallel encryption converts an OW-CPA secure PKE into an OW-CPA secure threshold PKE. To enhance security, we use Cong et al.’s conversion (Cong et al., ASIACRYPT’21). Thanks to eliminating signatures, its ciphertext is 512 bytes, which is only 3% of the first scheme. The decryption process needs an MPC for computing hash functions, but decryption of OW-CPA secure PKE can be done locally. The third scheme is an MPC-based threshold PKE scheme from code-based assumption. We take the same approach Cong et al. took to construct efficient lattice-based threshold PKEs. We build an MPC for the decryption algorithm of OW-CPA secure Classic McEliece PKE. This scheme has the shortest ciphertext among the three schemes at just 192 bytes. Compared to the regular CCA secure Classic McEliece PKE, the additional ciphertext length is only 100 bytes. The cons are heavy distributed computation in the decryption process.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Reference48 articles.

1. Adida B.: Helios: web-based open-audit voting. In: van Oorschot P.C. (ed.) USENIX Security 2008, pp. 335–348. USENIX Association (2008).

2. Albrecht M.R., Bernstein D.J., Chou T., Cid C., Gilcher J., Lange T., Maram V., von Maurich I., Misoczki R., Niederhagen R., Paterson K.G., Persichetti E., Peters C., Schwabe P., Sendrier N., Szefer J., Tjhai C.J., Tomlinson M., Wang W.: Classic McEliece. Technical report. National Institute of Standards and Technology (2022). https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions.

3. Aly A., Ashur T., Ben-Sasson E., Dhooghe S., Szepieniec A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-45.

4. An J.H., Dodis Y., Rabin T.: On the security of joint signature and encryption. In: Knudsen L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer (2002). https://doi.org/10.1007/3-540-46035-7_6.

5. Bar-Ilan J., Beaver D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Rudnicki P. (ed.) 8th ACM PODC, pp. 201–209. ACM (1989). https://doi.org/10.1145/72981.72995.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3