Author:
Héger Tamás,Patkós Balázs,Takáts Marcella
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference15 articles.
1. Bacsó G., Héger T., Szőnyi T.: The $$2$$ 2 -blocking number and the upper chromatic number of PG $$(2, q)$$ ( 2 , q ) . J. Comb. Des. 21(12), 585–602 (2013).
2. Bailey R.F.: Resolving sets for incidence graphs, Session talk at the 23rd British Combinatorial Conference, Exeter, 5th July 2011. http://www.math.uregina.ca/bailey/talks/bcc23 (2011). Accessed 21 Jun 2013.
3. Bailey R.F., Cameron P.J.: Base size, metric dimension and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011).
4. Ball S.: Multiple blocking sets and arcs in finite planes. J. Lond. Math. Soc. 54(3), 581–593 (1996).
5. Ball S., Blokhuis A.: On the size of a double blocking set in PG $$(2, q)$$ ( 2 , q ) . Finite Fields Appl. 2, 125–137 (1996).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Strong blocking sets and minimal codes from expander graphs;Transactions of the American Mathematical Society;2024-06-11
2. All minimal [9,4]2-codes are hyperbolic quadrics;Examples and Counterexamples;2023-11
3. Expander graphs, strong blocking sets and minimal codes;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023
4. Higgledy-Piggledy Sets in Projective Spaces of Small Dimension;The Electronic Journal of Combinatorics;2022-07-29
5. Short Minimal Codes and Covering Codes via Strong Blocking Sets in Projective Spaces;IEEE Transactions on Information Theory;2022-02