Abstract
AbstractDelandtsheer and Doyen bounded, in terms of the block size, the number of points of a point-imprimitive, block-transitive 2-design. To do this they introduced two integer parameters m, n, now called Delandtsheer–Doyen parameters, linking the block size with the parameters of an associated imprimitivity system on points. We show that the Delandtsheer–Doyen parameters provide upper bounds on the permutation ranks of the groups induced on the imprimitivity system and on a class of the system. We explore extreme cases where these bounds are attained, give a new construction for a family of designs achieving these bounds, and pose several open questions concerning the Delandtsheer–Doyen parameters.
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference21 articles.
1. Alavi S.H., Daneshkhah A., Devillers A., Praeger C.E.: Block-transitive designs based on grids. arxiv:2201.01143.
2. Aletheia-Zomlefer S.L., Fukshansky L., Garcia S.R.: The Bateman-Horn conjecture: heuristics, history, and applications. Expo. Math. 38, 430–479 (2020).
3. Amarra C., Devillers A., Praeger C. E.: Delandsheer–Doyen parameters for block-transitive point-imprimitive block designs. arxiv:2009.00282.
4. Bateman P.T., Horn R.A.: A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp. 16, 363–367 (1962).
5. Bouniakowsky V.: Sur les diviseurs numériques invariables des fonctions rationnelles entières. Mém. Acad. Sci. St. Péteresbourg 6$$e^e$$ série 6, 305–329 (1857).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献