Funder
Italian National Group for Algebraic and Geometric Structures and their Applications
University of Perugia
Russian Government
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference33 articles.
1. Bacsó G., Héger T., Szőnyi T.: The 2-blocking number and the upper chromatic number of $$\text{ PG }(2, q)$$. J. Comb. Des. 21(12), 585–602 (2013).
2. Bartoli D., Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: New bounds for linear codes of covering radii 2 and 3, Cryptography and Communications, to appear,
https://doi.org/10.1007/s12095-018-0335-0
. Accessed 26 May 2019.
3. Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois planes. Adv. Geom. 7(1), 39–53 (2007).
4. Boros E., Szőnyi T., Tichler K.: On defining sets for projective planes. Discret. Math. 303(1–3), 17–31 (2005).
5. Brualdi R.A., Pless V.S., Wilson R.M.: Short codes with a given covering radius. IEEE Trans. Inf. Theory 35(1), 99–109 (1989).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Further results on covering codes with radius R and codimension $$tR+1$$;Designs, Codes and Cryptography;2024-04-27
2. Outer Strong Blocking Sets;The Electronic Journal of Combinatorics;2024-04-19
3. Grassmannians of codes;Finite Fields and Their Applications;2024-02
4. Small Strong Blocking Sets by Concatenation;SIAM Journal on Discrete Mathematics;2023-01-20
5. New bounds for covering codes of radius 3 and codimension $ 3t+1 $;Advances in Mathematics of Communications;2023