Abstract
AbstractMany q-ary stabilizer quantum codes can be constructed from Hermitian self-orthogonal $$q^2$$
q
2
-ary linear codes. This result can be generalized to $$q^{2 m}$$
q
2
m
-ary linear codes, $$m > 1$$
m
>
1
. We give a result for easily obtaining quantum codes from that generalization. As a consequence we provide several new binary stabilizer quantum codes which are records according to Grassl (Bounds on the minimum distance of linear codes, http://www.codetables.de, 2020) and new q-ary ones, with $$q \ne 2$$
q
≠
2
, improving others in the literature.
Funder
Ministerio de Ciencia, Innovación y Universidades
Departament de Matemàtiques, Universitat Jaume I
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献