Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference68 articles.
1. Abel R.J.R., Bennett F.E.: Super-simple Steiner pentagon systems. Discrete Appl. Math. 156(5), 780–793 (2008)
2. Abel R.J.R., Colbourn C.J., Yin J., Zhang H.: Existence of incomplete transversal designs with block size five and any index λ. Des. Codes Cryptogr. 10(3), 275–307 (1997)
3. Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually Orthogonal Latin Squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds) The CRC Handbook of Combinatorial Designs, 2nd edn, pp. 160–193. CRC Press, Boca Raton (2007)
4. Abel R.J.R., Bennett F.E., Ge G.: Super-simple holey Steiner pentagon systems and related designs. J. Combin. Des. 16(4), 301–328 (2008)
5. Adams P., Bryant D.E., Khodkar A.: On the existence of super-simple designs with block size 4. Aequationes Math. 51(3), 230–246 (1996)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The existence of 23 ${2}^{3}$‐decomposable super‐simple (v,4,6) $(v,4,6)$‐BIBDs;Journal of Combinatorial Designs;2024-02-22
2. The existence of λ $\lambda $‐decomposable super‐simple (4,2λ) $(4,2\lambda )$‐GDDs of type gu ${g}^{u}$ with λ=2,4 $\lambda =2,4$;Journal of Combinatorial Designs;2023-03-30
3. 42-Decomposable super-simple (v,4,8)-BIBDs;Discrete Mathematics;2022-12
4. Decomposable super‐simple BIBDs with block size 4 and index 4, 6;Journal of Combinatorial Designs;2022-02-26
5. Decomposable super‐simple RBIBDs with block size 4 and index 6;Journal of Combinatorial Designs;2019-09-26