Embedded antipodal planes and the minimum weight of the dual code of points and lines in projective planes of order $$p^2$$

Author:

De Boeck Maarten,Van de Voorde GeertruiORCID

Abstract

AbstractThe minimum weight of the code generated by the incidence matrix of points versus lines in a projective plane has been known for over 50 years. Surprisingly, finding the minimum weight of the dual code of projective planes of non-prime order is still an open problem, even in the Desarguesian case. In this paper, we focus on the case of projective planes of order $$p^2$$ p 2 , where p is prime, and we link the existence of small weight code words in the dual code to the existence of embedded subplanes and antipodal planes. In the Desarguesian case, we can exclude such code words by showing a more general result that no antipodal plane of order at least 3 can be embedded in a Desarguesian projective plane. Furthermore, we use combinatorial arguments to rule out the existence of code words in the dual code of points and lines of an arbitrary projective plane of order $$p^2$$ p 2 , p prime, of weight at most $$2p^2-2p+4$$ 2 p 2 - 2 p + 4 using more than two symbols. In particular, this leads to the result that the dual code of the Desarguesian projective plane $${{\,\textrm{PG}\,}}(2,p^2)$$ PG ( 2 , p 2 ) , $$p\ge 5$$ p 5 , has minimum weight at least $$2p^2-2p+5$$ 2 p 2 - 2 p + 5 .

Funder

Marsden Fund

Hrvatska Zaklada za Znanost

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3