Abstract
AbstractFor integers m and n, we study the problem of finding good lower bounds for the size of progression-free sets in $$(\mathbb {Z}_{m}^{n},+)$$
(
Z
m
n
,
+
)
. Let $$r_{k}(\mathbb {Z}_{m}^{n})$$
r
k
(
Z
m
n
)
denote the maximal size of a subset of $$\mathbb {Z}_{m}^{n}$$
Z
m
n
without arithmetic progressions of length k and let $$P^{-}(m)$$
P
-
(
m
)
denote the least prime factor of m. We construct explicit progression-free sets and obtain the following improved lower bounds for $$r_{k}(\mathbb {Z}_{m}^{n})$$
r
k
(
Z
m
n
)
:
If $$k\ge 5$$
k
≥
5
is odd and $$P^{-}(m)\ge (k+2)/2$$
P
-
(
m
)
≥
(
k
+
2
)
/
2
, then $$\begin{aligned} r_k(\mathbb {Z}_m^n) \gg _{m,k} \frac{\bigl \lfloor \frac{k-1}{k+1}m +1\bigr \rfloor ^{n}}{n^{\lfloor \frac{k-1}{k+1}m \rfloor /2}}. \end{aligned}$$
r
k
(
Z
m
n
)
≫
m
,
k
⌊
k
-
1
k
+
1
m
+
1
⌋
n
n
⌊
k
-
1
k
+
1
m
⌋
/
2
.
If $$k\ge 4$$
k
≥
4
is even, $$P^{-}(m) \ge k$$
P
-
(
m
)
≥
k
and $$m \equiv -1 \bmod k$$
m
≡
-
1
mod
k
, then $$\begin{aligned} r_{k}(\mathbb {Z}_{m}^{n}) \gg _{m,k} \frac{\bigl \lfloor \frac{k-2}{k}m + 2\bigr \rfloor ^{n}}{n^{\lfloor \frac{k-2}{k}m + 1\rfloor /2}}. \end{aligned}$$
r
k
(
Z
m
n
)
≫
m
,
k
⌊
k
-
2
k
m
+
2
⌋
n
n
⌊
k
-
2
k
m
+
1
⌋
/
2
.
Moreover, we give some further improved lower bounds on $$r_k(\mathbb {Z}_p^n)$$
r
k
(
Z
p
n
)
for primes $$p \le 31$$
p
≤
31
and progression lengths $$4 \le k \le 8$$
4
≤
k
≤
8
.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications