Abstract
AbstractWe introduce quaternary modified four $$\mu $$
μ
-circulant codes as a modification of four circulant codes. We give basic properties of quaternary modified four $$\mu $$
μ
-circulant Hermitian self-dual codes. We also construct quaternary modified four $$\mu $$
μ
-circulant Hermitian self-dual codes having large minimum weights. Two quaternary Hermitian self-dual [56, 28, 16] codes are constructed for the first time. These codes improve the previously known lower bound on the largest minimum weight among all quaternary (linear) [56, 28] codes. In addition, these codes imply the existence of a quantum [[56, 0, 16]] code.
Publisher
Springer Science and Business Media LLC