The geometric field of linearity of linear sets

Author:

Jena Dibyayoti,Van de Voorde GeertruiORCID

Abstract

AbstractIf an $${\mathbb {F}}_q$$ F q -linear set $$L_U$$ L U in a projective space is defined by a vector subspace U which is linear over a proper superfield of $${\mathbb {F}}_{q}$$ F q , then all of its points have weight at least 2. It is known that the converse of this statement holds for linear sets of rank h in $$\mathrm {PG}(1,q^h)$$ PG ( 1 , q h ) but for linear sets of rank $$k<h$$ k < h the converse of this statement is in general no longer true. The first part of this paper studies the relation between the weights of points and the size of a linear set, and introduces the concept of the geometric field of linearity of a linear set. This notion will allow us to show the main theorem, stating that for particular linear sets without points of weight 1, the converse of the above statement still holds as long as we take the geometric field of linearity into account.

Funder

marsden fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classifications and constructions of minimum size linear sets on the projective line;Finite Fields and Their Applications;2023-12

2. Antipodal two-weight rank metric codes;Designs, Codes and Cryptography;2023-08-18

3. Multi-orbit cyclic subspace codes and linear sets;Finite Fields and Their Applications;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3