Abstract
AbstractIn this paper we prove that in opposite to the cases of 6 and 8 variables, the Maiorana-McFarland construction does not describe the whole class of cubic bent functions in n variables for all $$n\ge 10$$
n
≥
10
. Moreover, we show that for almost all values of n, these functions can simultaneously be homogeneous and have no affine derivatives.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference40 articles.
1. Bending T.D.: Bent functions, SDP designs and their automorphism groups. Ph.D. thesis, Queen Mary and Westfield College (1993).
2. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993) https://doi.org/10.1006/jsco.1996.0125.
3. Braeken A.: Cryptographic properties of Boolean functions and S-boxes. Ph.D. thesis, Katholieke Universiteit Leuven (2006).
4. Canteaut A., Charpin P.: Decomposing bent functions. IEEE Trans. Information Theory 49, 2004–2019 (2003). https://doi.org/10.1109/ISIT.2002.1023314.
5. Canteaut A., Charpin P., Kyureghyan G.M.: A new class of monomial bent functions. Finite Fields and Their Applications 14(1), 221–241 (2008). https://doi.org/10.1016/j.ffa.2007.02.004.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献