Abstract
AbstractIn this article, constant dimension subspace codes whose codewords have subspace distance in a prescribed set of integers, are considered. The easiest example of such an object is a junta (Combin Probab Comput 18(1–2):107–122, 2009); i.e. a subspace code in which all codewords go through a common subspace. We focus on the case when only two intersection values for the codewords, are assigned. In such a case we determine an upper bound for the dimension of the vector space spanned by the elements of a non-junta code. In addition, if the two intersection values are consecutive, we prove that such a bound is tight, and classify the examples attaining the largest possible dimension as one of four infinite families.
Funder
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications