Author:
Colbourn Charles J.,Horsley Daniel,Wang Chengmin
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference14 articles.
1. Abel R.J.R., Colbourn C.J., Dinitz J.H.: Mutually orthogonal latin squares (MOLS). In: Colbourn C.J., Dinitz J.H.(eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 160–193. CRC Press, Boca Raton (2007).
2. Cohen M.B., Colbourn C.J.: Optimal and pessimal orderings of Steiner triple systems in disk arrays. Theor. Comput. Sci. 297, 103–117 (2003)
3. Colbourn C.J., Rosa A.: Triple Systems. Oxford University Press, Oxford (1999)
4. Colbourn C.J., Zhao S.: Maximum Kirkman signal sets for synchronous uni-polar multi-user communication systems. Des. Codes Cryptogr. 20, 219–227 (2000)
5. Deng D., Rees R., Shen H.: On the existence of nearly Kirkman triple systems with subsystems. Des. Codes Cryptogr. 48, 17–33 (2008)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Asymptotic Existence of Egalitarian Steiner 2-Designs;Fields Institute Communications;2023-11-16
2. Egalitarian Steiner triple systems for data popularity;Designs, Codes and Cryptography;2021-09-09
3. Popularity Block Labelling for Steiner Systems;2020 Algebraic and Combinatorial Coding Theory (ACCT);2020-10-11
4. Some new Kirkman signal sets;Designs, Codes and Cryptography;2017-12-01
5. Overlap Cycles for Steiner Quadruple Systems;Journal of Combinatorial Designs;2013-10-14