Author:
Buratti Marco,Momihara Koji,Pasotti Anita
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference27 articles.
1. Abel R.J.R., Buratti M.: Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory Ser. A 106, 59–75 (2004).
2. Abel, R.J.R., Buratti, M.: Difference families. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn., pp. 392–409. Chapman & Hall/CRC Press, Boca Raton, FL (2006).
3. Alderson T.L., Mellinger K.E.: Families of optimal OOCs with λ = 2. IEEE Trans. Inform. Theory 54, 3722–3724 (2008).
4. Alderson T.L., Mellinger K.E.: Geometric constructions of optimal optical orthogonal codes. Adv. Math. Commun. 2, 451–467 (2008).
5. Beth T., Jungnickel D., Lenz H.: Design Theory. Cambridge University Press, Cambridge (1999).
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Maximal (v, k, 2, 1) Optical Orthogonal Codes with k = 6 and 7 and Small Lengths;Mathematics;2023-05-26
2. A few more optimal optical orthogonal codes with non-constant auto-correlation function;Advances in Mathematics of Communications;2023
3. Some progress on optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes;Advances in Mathematics of Communications;2021
4. The sizes of maximal $$(v,k,k-2,k-1)$$ optical orthogonal codes;Designs, Codes and Cryptography;2020-01-16
5. Further results on optimal $ (n, \{3, 4, 5\}, \Lambda_a, 1, Q) $-OOCs;Advances in Mathematics of Communications;2019