Block avoiding point sequencings of partial Steiner systems

Author:

Horsley DanielORCID,Ó Catháin PadraigORCID

Abstract

AbstractA partial$$(n,k,t)_\lambda $$ ( n , k , t ) λ -system is a pair $$(X,{\mathcal {B}})$$ ( X , B ) where X is an n-set of vertices and $${\mathcal {B}}$$ B is a collection of k-subsets of X called blocks such that each t-set of vertices is a subset of at most $$\lambda $$ λ blocks. A sequencing of such a system is a labelling of its vertices with distinct elements of $$\{0,\ldots ,n-1\}$$ { 0 , , n - 1 } . A sequencing is $$\ell $$ -block avoiding or, more briefly, $$\ell $$ -good if no block is contained in a set of $$\ell $$ vertices with consecutive labels. Here we give a short proof that, for fixed k, t and $$\lambda $$ λ , any partial $$(n,k,t)_\lambda $$ ( n , k , t ) λ -system has an $$\ell $$ -good sequencing for some $$\ell =\Theta (n^{1/t})$$ = Θ ( n 1 / t ) as n becomes large. This improves on results of Blackburn and Etzion, and of Stinson and Veitch. Our result is perhaps of most interest in the case $$k=t+1$$ k = t + 1 where results of Kostochka, Mubayi and Verstraëte show that the value of $$\ell $$ cannot be increased beyond $$\Theta ((n \log n)^{1/t})$$ Θ ( ( n log n ) 1 / t ) . A special case of our result shows that every partial Steiner triple system (partial $$(n,3,2)_1$$ ( n , 3 , 2 ) 1 -system) has an $$\ell $$ -good sequencing for each positive integer $$\ell \leqslant 0.0908\,n^{1/2}$$ 0.0908 n 1 / 2 .

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3