Abstract
AbstractA finite classical polar space of rank n consists of the totally isotropic subspaces of a finite vector space over $$\mathbb {F}_q$$
F
q
equipped with a nondegenerate form such that n is the maximal dimension of such a subspace. A t-$$(n,k,\lambda )$$
(
n
,
k
,
λ
)
design in a finite classical polar space of rank n is a collection Y of totally isotropic k-spaces such that each totally isotropic t-space is contained in exactly $$\lambda $$
λ
members of Y. Nontrivial examples are currently only known for $$t\le 2$$
t
≤
2
. We show that t-$$(n,k,\lambda )$$
(
n
,
k
,
λ
)
designs in polar spaces exist for all t and q provided that $$k>\frac{21}{2}t$$
k
>
21
2
t
and n is sufficiently large enough. The proof is based on a probabilistic method by Kuperberg, Lovett, and Peled, and it is thus nonconstructive.
Funder
Deutsche Forschungsgemeinschaft
Universität Paderborn
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Ball S.: Finite Geometry and Combinatorial Applications: London Mathematical Society Student Texts, vol. 82, p. xii+285. Cambridge University Press, Cambridge (2015) https://doi.org/10.1017/CBO9781316257449.
2. Bamberg J., Lansdown J., Lee M.: On $$m$$-ovoids of regular near polygons. Des. Codes Cryptogr. 86(5), 997–1006 (2018). https://doi.org/10.1007/s10623-017-0373-1.
3. Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs: Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18, p. xviii+495. Springer, Berlin (1989) https://doi.org/10.1007/978-3-642-74341-2.
4. Cameron P.J.: Generalisation of Fisher’s inequality to fields with more than one element. In: Combinatorics (Proceedings of the British Combinatorial Conference, University College of Wales, Aberystwyth, 1973). Lecture Notes Series, No. 13, pp. 9–13. London Mathematical Society (1974). https://doi.org/10.1017/CBO9780511662072.003.
5. Carter R.W.: Finite Groups of Lie Type. Wiley Classics Library. Conjugacy Classes and Complex Characters. Reprint of the 1985 Original, pp. xii+544. A Wiley-Interscience Publication. Wiley, Chichester (1993).