Abstract
AbstractIt is known that correlation-immune (CI) Boolean functions used in the framework of side channel attacks need to have low Hamming weights. The supports of CI functions are (equivalently) simple orthogonal arrays, when their elements are written as rows of an array. The minimum Hamming weight of a CI function is then the same as the minimum number of rows in a simple orthogonal array. In this paper, we use Rao’s Bound to give a sufficient condition on the number of rows, for a binary orthogonal array (OA) to be simple. We apply this result for determining the minimum number of rows in all simple binary orthogonal arrays of strengths 2 and 3; we show that this minimum is the same in such case as for all OA, and we extend this observation to some OA of strengths 4 and 5. This allows us to reply positively, in the case of strengths 2 and 3, to a question raised by the first author and X. Chen on the monotonicity of the minimum Hamming weight of 2-CI Boolean functions, and to partially reply positively to the same question in the case of strengths 4 and 5.
Funder
Nemzeti Kutatsi Fejlesztsi s Innovcis Hivatal
Hungarian Scientific Research Fund
Trond Mohn stiftelse
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献