On the linearity and classification of $${\mathbb {Z}}_{p^s}$$-linear generalized hadamard codes

Author:

Bhunia Dipak K.,Fernández-Córdoba Cristina,Villanueva MercèORCID

Abstract

Abstract$${\mathbb {Z}}_{p^s}$$ Z p s -additive codes of length n are subgroups of $${\mathbb {Z}}_{p^s}^n$$ Z p s n , and can be seen as a generalization of linear codes over $${\mathbb {Z}}_2$$ Z 2 , $${\mathbb {Z}}_4$$ Z 4 , or $${\mathbb {Z}}_{2^s}$$ Z 2 s in general. A $${\mathbb {Z}}_{p^s}$$ Z p s -linear generalized Hadamard (GH) code is a GH code over $${\mathbb {Z}}_p$$ Z p which is the image of a $${\mathbb {Z}}_{p^s}$$ Z p s -additive code by a generalized Gray map. In this paper, we generalize some known results for $${\mathbb {Z}}_{p^s}$$ Z p s -linear GH codes with $$p=2$$ p = 2 to any odd prime p. First, we show some results related to the generalized Carlet’s Gray map. Then, by using an iterative construction of $${\mathbb {Z}}_{p^s}$$ Z p s -additive GH codes of type $$(n;t_1,\ldots , t_s)$$ ( n ; t 1 , , t s ) , we show for which types the corresponding $${\mathbb {Z}}_{p^s}$$ Z p s -linear GH codes of length $$p^t$$ p t are nonlinear over $${\mathbb {Z}}_p$$ Z p . For these codes, we compute the kernel and its dimension, which allow us to give a partial classification. The obtained results for $$p\ge 3$$ p 3 are different from the case with $$p=2$$ p = 2 . Finally, the exact number of non-equivalent such codes is given for an infinite number of values of s, t, and any $$p\ge 2$$ p 2 ; by using also the rank as an invariant in some specific cases.

Funder

Agencia Estatal de Investigación

Agència de Gestió d’Ajuts Universitaris i de Recerca

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partial permutation decoding and PD-sets for Zps-linear generalized Hadamard codes;Finite Fields and Their Applications;2024-01

2. On the equivalence of $$\mathbb {Z}_{p^s}$$-linear generalized Hadamard codes;Designs, Codes and Cryptography;2023-11-18

3. On ℤ248-Additive Hadamard Codes;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

4. Linearity and classification of ZpZp2-linear generalized Hadamard codes;Finite Fields and Their Applications;2023-02

5. On recursive constructions of $ \mathbb{Z}_2 \mathbb{Z}_4 \mathbb{Z}_8 $-linear Hadamard codes;Advances in Mathematics of Communications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3