Abstract
Abstract$${\mathbb {Z}}_{p^s}$$
Z
p
s
-additive codes of length n are subgroups of $${\mathbb {Z}}_{p^s}^n$$
Z
p
s
n
, and can be seen as a generalization of linear codes over $${\mathbb {Z}}_2$$
Z
2
, $${\mathbb {Z}}_4$$
Z
4
, or $${\mathbb {Z}}_{2^s}$$
Z
2
s
in general. A $${\mathbb {Z}}_{p^s}$$
Z
p
s
-linear generalized Hadamard (GH) code is a GH code over $${\mathbb {Z}}_p$$
Z
p
which is the image of a $${\mathbb {Z}}_{p^s}$$
Z
p
s
-additive code by a generalized Gray map. In this paper, we generalize some known results for $${\mathbb {Z}}_{p^s}$$
Z
p
s
-linear GH codes with $$p=2$$
p
=
2
to any odd prime p. First, we show some results related to the generalized Carlet’s Gray map. Then, by using an iterative construction of $${\mathbb {Z}}_{p^s}$$
Z
p
s
-additive GH codes of type $$(n;t_1,\ldots , t_s)$$
(
n
;
t
1
,
…
,
t
s
)
, we show for which types the corresponding $${\mathbb {Z}}_{p^s}$$
Z
p
s
-linear GH codes of length $$p^t$$
p
t
are nonlinear over $${\mathbb {Z}}_p$$
Z
p
. For these codes, we compute the kernel and its dimension, which allow us to give a partial classification. The obtained results for $$p\ge 3$$
p
≥
3
are different from the case with $$p=2$$
p
=
2
. Finally, the exact number of non-equivalent such codes is given for an infinite number of values of s, t, and any $$p\ge 2$$
p
≥
2
; by using also the rank as an invariant in some specific cases.
Funder
Agencia Estatal de Investigación
Agència de Gestió d’Ajuts Universitaris i de Recerca
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Reference26 articles.
1. Armario, J.A., Bailera, I., Egan, R.: Butson full propelinear codes. preprint arXiv:2010.06206 (2020)
2. Assmus E.F., Key J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1992).
3. Bauer H., Ganter B., Hergert F.: Algebraic techniques for nonlinear codes. Combinatorica 3(1), 21–33 (1983).
4. Blake I.F.: Codes over integer residue rings. Information and Control 29(4), 295–300 (1975).
5. Borges J., Fernández-Córdoba C., Rifà J.: Every $${\mathbb{Z}}_{2^k}$$-code is a binary propelinear code. Electron Notes Discret Math 10, 100–102 (2001).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献