Securing federated learning with blockchain: a systematic literature review

Author:

Qammar Attia,Karim Ahmad,Ning Huansheng,Ding JianguoORCID

Abstract

AbstractFederated learning (FL) is a promising framework for distributed machine learning that trains models without sharing local data while protecting privacy. FL exploits the concept of collaborative learning and builds privacy-preserving models. Nevertheless, the integral features of FL are fraught with problems, such as the disclosure of private information, the unreliability of uploading model parameters to the server, the communication cost, etc. Blockchain, as a decentralized technology, is able to improve the performance of FL without requiring a centralized server and also solves the above problems. In this paper, a systematic literature review on the integration of Blockchain in federated learning was considered with the analysis of the existing FL problems that can be compensated. Through carefully screening, most relevant studies are included and research questions cover the potential security and privacy attacks in traditional federated learning that can be solved by blockchain as well as the characteristics of Blockchain-based FL. In addition, the latest Blockchain-based approaches to federated learning have been studied in-depth in terms of security and privacy, records and rewards, and verification and accountability. Furthermore, open issues related to the combination of Blockchain and FL are discussed. Finally, future research directions for the robust development of Blockchain-based FL systems are proposed.

Funder

Blekinge Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TactiFlex: A Federated learning-enhanced in-content aware resource allocation flexible architecture for Tactile IoT in 6G networks;Engineering Applications of Artificial Intelligence;2024-10

2. Blockchain, artificial intelligence, and healthcare: the tripod of future—a narrative review;Artificial Intelligence Review;2024-08-08

3. Research on Federated Learning's Contribution to Trustworthy and Responsible Artificial Intelligence;Proceedings of the 2024 3rd International Symposium on Robotics, Artificial Intelligence and Information Engineering;2024-07-05

4. A Sharded Blockchain Architecture for Healthcare Data;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

5. A privacy-preserving federated learning protocol with a secure data aggregation for the Internet of Everything;Computer Communications;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3