Dynamic YOLO for small underwater object detection

Author:

Chen Jie,Er Meng Joo

Abstract

AbstractThe practical application of object detection inevitably encounters challenges posed by small objects. In underwater object detection, a crucial method for marine exploration, the presence of small objects in underwater environments significantly hampers the performance of detection. In this paper, a dynamic YOLO detector is proposed as a solution to alleviate this problem. Specifically, a light-weight backbone network is first constructed based on deformable convolution v3, with some specialized designs for small object detection. Secondly, a unified feature fusion framework based on channel-wise, scale-wise, and spatial-aware attention is proposed to fuse feature maps from different scales. This is particularly critical for detecting small objects since it allows us to fully exploit the enhanced capabilities offered by our proposed backbone network. Finally, a simple but effective detection head is designed to handle the conflict between classification and localization by disentangling and aligning the two tasks. Extensive experiments are conducted on benchmark datasets to demonstrate the effectiveness of the proposed model. Without bells and whistles, dynamic YOLO outperforms the recent state-of-the-art methods by a large margin of $$+\,0.8$$ + 0.8  AP and $$+\,1.8$$ + 1.8  $$\text {AP}_{S}$$ AP S on the DUO dataset. Experimental results on Pascal VOC and MS COCO datasets also demonstrate the superiority of the proposed method. At last, ablation studies are conducted on DUO dataset to validate the effectiveness and efficiency of each design in dynamic YOLO. Source code will be available at https://github.com/chenjie04/Dynamic-YOLO.

Funder

Fundamental Research Funds for the Central Universities

Leading Scholar Grant, Dalian Maritime University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3