A nonadditive rough set model for long-term clinical efficacy evaluation of chronic diseases in real-world settings

Author:

Xiaoli Chu,Juan Xu,Xiaodong Chu,Bingzhen Sun,Yan Zhang,Kun Bao,Yanlin Li

Abstract

AbstractThe pursuit of clinical effectiveness in real-world settings is at the core of clinical practice progression. In this study, we address a long-term clinical efficacy evaluation decision-making problem with temporal correlation hybrid attribute characteristics. To address this problem, we propose a novel approach that combines a temporal correlation feature rough set model with machine learning techniques and nonadditive measures. Our proposed approach involves several steps. First, over the framework of granular computing, we construct a temporal correlation hybrid information system, the gradient method is employed to characterize the temporal attributes and the similarity between objects is measured using cosine similarity. Second, based on the similarity of gradient and cosine, we construct a composite binary relation of temporal correlation hybrid information, enabling effective classification of this information. Third, we develop a rough set decision model based on the Choquet integral, which describes temporal correlation decision process. We provide the ranking results of decision schemes with temporal correlation features. To demonstrate the practical applications of our approach, we conduct empirical research using an unlabeled dataset consisting of 3094 patients with chronic renal failure (CRF) and 80,139 EHRs from various clinical encounters. These findings offer valuable support for clinical decision-making. Two main innovations are obtained from this study. First, it establishes general theoretical principles and decision-making methods for temporal correlation and hybrid rough sets. Second, it integrates data-driven clinical decision paradigms with traditional medical research paradigms, laying the groundwork for exploring the feasibility of data-driven clinical decision-making in the field.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3