A lexicographic optimisation approach to promote more recent features on longitudinal decision-tree-based classifiers: applications to the English Longitudinal Study of Ageing

Author:

Ribeiro Caio,Freitas Alex A.

Abstract

AbstractSupervised machine learning algorithms rarely cope directly with the temporal information inherent to longitudinal datasets, which have multiple measurements of the same feature across several time points and are often generated by large health studies. In this paper we report on experiments which adapt the feature-selection function of decision tree-based classifiers to consider the temporal information in longitudinal datasets, using a lexicographic optimisation approach. This approach gives higher priority to the usual objective of maximising the information gain ratio, and it favours the selection of features more recently measured as a lower priority objective. Hence, when selecting between features with equivalent information gain ratio, priority is given to more recent measurements of biomedical features in our datasets. To evaluate the proposed approach, we performed experiments with 20 longitudinal datasets created from a human ageing study. The results of these experiments show that, in addition to an improvement in predictive accuracy for random forests, the changed feature-selection function promotes models based on more recent information that is more directly related to the subject’s current biomedical situation and, thus, intuitively more interpretable and actionable.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3