Knowledge transfer in lifelong machine learning: a systematic literature review

Author:

Khodaee Pouya,Viktor Herna L.,Michalowski Wojtek

Abstract

AbstractLifelong Machine Learning (LML) denotes a scenario involving multiple sequential tasks, each accompanied by its respective dataset, in order to solve specific learning problems. In this context, the focus of LML techniques is on utilizing already acquired knowledge to adapt to new tasks efficiently. Essentially, LML concerns about facing new tasks while exploiting the knowledge previously gathered from earlier tasks not only to help in adapting to new tasks but also to enrich the understanding of past ones. By understanding this concept, one can better grasp one of the major obstacles in LML, known as Knowledge Transfer (KT). This systematic literature review aims to explore state-of-the-art KT techniques within LML and assess the evaluation metrics and commonly utilized datasets in this field, thereby keeping the LML research community updated with the latest developments. From an initial pool of 417 articles from four distinguished databases, 30 were deemed highly pertinent for the information extraction phase. The analysis recognizes four primary KT techniques: Replay, Regularization, Parameter Isolation, and Hybrid. This study delves into the characteristics of these techniques across both neural network (NN) and non-neural network (non-NN) frameworks, highlighting their distinct advantages that have captured researchers’ interest. It was found that the majority of the studies focused on supervised learning within an NN modelling framework, particularly employing Parameter Isolation and Hybrid for KT. The paper concludes by pinpointing research opportunities, including investigating non-NN models for Replay and exploring applications outside of computer vision (CV).

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3