Lob-based deep learning models for stock price trend prediction: a benchmark study

Author:

Prata Matteo,Masi Giuseppe,Berti Leonardo,Arrigoni Viviana,Coletta Andrea,Cannistraci Irene,Vyetrenko Svitlana,Velardi Paola,Bartolini Novella

Abstract

AbstractThe recent advancements in Deep Learning (DL) research have notably influenced the finance sector. We examine the robustness and generalizability of fifteen state-of-the-art DL models focusing on Stock Price Trend Prediction (SPTP) based on Limit Order Book (LOB) data. To carry out this study, we developed LOBCAST, an open-source framework that incorporates data preprocessing, DL model training, evaluation, and profit analysis. Our extensive experiments reveal that all models exhibit a significant performance drop when exposed to new data, thereby raising questions about their real-world market applicability. Our work serves as a benchmark, illuminating the potential and the limitations of current approaches and providing insight for innovative solutions.

Funder

JPMorgan Chase and Company

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Reference88 articles.

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283. Savannah, GA, USA

2. Al-Alawi AI, Alaali YA (2023) Stock market prediction using machine learning techniques: Literature review analysis. In: 2023 International Conference On Cyber Management And Engineering (CyMaEn), pp. 153–157. https://doi.org/10.1109/CyMaEn57228.2023.10050933

3. Alsulmi M (2022) From ranking search results to managing investment portfolios: exploring rank-based approaches for portfolio stock selection. Electronics 11(23):4019

4. Baker M (2016) Reproducibility crisis. Nature 533(26):353–66

5. Bennett S, Clarkson J (2022) Time series prediction under distribution shift using differentiable forgetting. arXiv preprint arXiv:2207.11486

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ViT-LOB: Efficient Vision Transformer for StockPrice Trend Prediction Using Limit Order Books;2024 10th International Conference on Applied System Innovation (ICASI);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3