Fire Hawk Optimizer: a novel metaheuristic algorithm

Author:

Azizi MahdiORCID,Talatahari SiamakORCID,Gandomi Amir H.ORCID

Abstract

AbstractThis study proposes the Fire Hawk Optimizer (FHO) as a novel metaheuristic algorithm based on the foraging behavior of whistling kites, black kites and brown falcons. These birds are termed Fire Hawks considering the specific actions they perform to catch prey in nature, specifically by means of setting fire. Utilizing the proposed algorithm, a numerical investigation was conducted on 233 mathematical test functions with dimensions of 2–100, and 150,000 function evaluations were performed for optimization purposes. For comparison, a total of ten different classical and new metaheuristic algorithms were utilized as alternative approaches. The statistical measurements include the best, mean, median, and standard deviation of 100 independent optimization runs, while well-known statistical analyses, such as Kolmogorov–Smirnov, Wilcoxon, Mann–Whitney, Kruskal–Wallis, and Post-Hoc analysis, were also conducted. The obtained results prove that the FHO algorithm exhibits better performance than the compared algorithms from literature. In addition, two of the latest Competitions on Evolutionary Computation (CEC), such as CEC 2020 on bound constraint problems and CEC 2020 on real-world optimization problems including the well-known mechanical engineering design problems, were considered for performance evaluation of the FHO algorithm, which further demonstrated the superior capability of the optimizer over other metaheuristic algorithms in literature. The capability of the FHO is also evaluated in dealing with two of the real-size structural frames with 15 and 24 stories in which the new method outperforms the previously developed metaheuristics.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3