Safety-critical computer vision: an empirical survey of adversarial evasion attacks and defenses on computer vision systems

Author:

Meyers Charles,Löfstedt Tommy,Elmroth Erik

Abstract

AbstractConsidering the growing prominence of production-level AI and the threat of adversarial attacks that can poison a machine learning model against a certain label, evade classification, or reveal sensitive data about the model and training data to an attacker, adversaries pose fundamental problems to machine learning systems. Furthermore, much research has focused on the inverse relationship between robustness and accuracy, raising problems for real-time and safety-critical systems particularly since they are governed by legal constraints in which software changes must be explainable and every change must be thoroughly tested. While many defenses have been proposed, they are often computationally expensive and tend to reduce model accuracy. We have therefore conducted a large survey of attacks and defenses and present a simple and practical framework for analyzing any machine-learning system from a safety-critical perspective using adversarial noise to find the upper bound of the failure rate. Using this method, we conclude that all tested configurations of the ResNet architecture fail to meet any reasonable definition of ‘safety-critical’ when tested on even small-scale benchmark data. We examine state of the art defenses and attacks against computer vision systems with a focus on safety-critical applications in autonomous driving, industrial control, and healthcare. By testing a combination of attacks and defenses, their efficacy, and their run-time requirements, we provide substantial empirical evidence that modern neural networks consistently fail to meet established safety-critical standards by a wide margin.

Funder

eSSENCE Programme under the Swedish Government’s Strategic Research Initiative

Knut och Alice Wallenbergs Stiftelse

Umea University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Massively Parallel Evasion Attacks and the Pitfalls of Adversarial Retraining;EAI Endorsed Transactions on Internet of Things;2024-07-17

2. Particle Swarm Optimization in Biomedical Technologies;Advances in Healthcare Information Systems and Administration;2024-02-23

3. A Comprehensive Risk Analysis Method for Adversarial Attacks on Biometric Authentication Systems;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3