Author:
Zhou Guangyao,Tian Wenhong,Buyya Rajkumar,Xue Ruini,Song Liang
Abstract
AbstractWith the acceleration of the Internet in Web 2.0, Cloud computing is a new paradigm to offer dynamic, reliable and elastic computing services. Efficient scheduling of resources or optimal allocation of requests is one of the prominent issues in emerging Cloud computing. Considering the growing complexity of Cloud computing, future Cloud systems will require more effective resource management methods. In some complex scenarios with difficulties in directly evaluating the performance of scheduling solutions, classic algorithms (such as heuristics and meta-heuristics) will fail to obtain an effective scheme. Deep reinforcement learning (DRL) is a novel method to solve scheduling problems. Due to the combination of deep learning and reinforcement learning (RL), DRL has achieved considerable performance in current studies. To focus on this direction and analyze the application prospect of DRL in Cloud scheduling, we provide a comprehensive review for DRL-based methods in resource scheduling of Cloud computing. Through the theoretical formulation of scheduling and analysis of RL frameworks, we discuss the advantages of DRL-based methods in Cloud scheduling. We also highlight different challenges and discuss the future directions existing in the DRL-based Cloud scheduling.
Funder
Key Research and Development Program of Sichuan Province
National Key Research and Development Program of China
Sichuan Provincial Science and Technology Plan Project
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献