Position adaptive residual block and knowledge complement strategy for point cloud analysis

Author:

Zhang Shichao,Shen Hangchi,Duan Shukai,Wang Lidan

Abstract

AbstractDue to the sparsity, irregularity and disorder of the point cloud, the tasks related to it are full of challenges. Exploring local geometric patterns and multi-scale features is effective for point cloud understanding, and promising results have been achieved. In this paper, we present a Position Adaptive Residual Block, namely PARB, for the first time. It can carry out powerful geometric signal description and feature learning. Starting from this module, we propose two extensions. First, a Position Adaptive Residual Network, called PARNet, is derived by utilizing PARB. Second, PARB can be regarded as a plug-and-play module embedded in MLP-based networks, which can remarkably enhance the performance of the backbone. We also introduce an efficient Knowledge Complement Strategy, which is part of the PARNet architecture, to make the framework perform better. Extensive experimental results on challenging benchmarks demonstrate that our PARNet delivers the new state-of-the-art on ShapeNet-Part and achieves competitive performance on ModelNet40.

Funder

National Natural Science Foundation of China

Chongqing Talent Plan Contract System Project

Publisher

Springer Science and Business Media LLC

Reference54 articles.

1. Akhtar A, Gao W, Li L, Li Z, Jia W, Liu S (2021) Video-based point cloud compression artifact removal. IEEE Trans Multimed 24:2866–2876

2. Aksoy EE, Baci S, Cavdar S (2020) Salsanet: Fast road and vehicle segmentation in lidar point clouds for autonomous driving. In: 2020 IEEE intelligent vehicles symposium (IV), IEEE, pp 926–932

3. Chang A.X, Funkhouser T, Guibas L, Hanrahan P, Huang Q, Li Z, Savarese S, Savva M, Song S, Su H, et al. (2015) Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012

4. Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587

5. Chen G, Wang M, Yang Y, Yu K, Yuan L, Yue Y (2023). Pointgpt: Auto-regressively generative pre-training from point clouds. arXiv preprint arXiv:2305.11487

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3