Survey on evaluation methods for dialogue systems

Author:

Deriu JanORCID,Rodrigo Alvaro,Otegi Arantxa,Echegoyen Guillermo,Rosset Sophie,Agirre Eneko,Cieliebak Mark

Abstract

AbstractIn this paper, we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation, in and of itself, is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost- and time-intensive. Thus, much work has been put into finding methods which allow a reduction in involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented, conversational, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then present the evaluation methods regarding that class.

Funder

CHIST-ERA

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Agencia Estatal de Investigación

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Reference202 articles.

1. Adiwardana D, Luong MT, So DR, Hall J, Fiedel N, Thoppilan R, Yang Z, Kulshreshtha A, Nemade G, Lu Y, et al. (2020) Towards a human-like open-domain chatbot. arXiv preprint arXiv:200109977

2. Ameixa D, Coheur L (2013) From subtitles to human interactions: introducing the SubTle Corpus. In: Technical report 2013

3. Austin JL (1962) How to do things with words. Oxford University Press, Oxford, William James

4. Banchs RE (2012) Movie-DiC: a Movie Dialogue Corpus for Research and Development. In: Proceedings of the 50th annual meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Association for Computational Linguistics, pp 203–207

5. Banchs RE, Li H (2012) IRIS: a chat-oriented dialogue system based on the vector space model. In: Proceedings of the ACL 2012 demonstrations, Jeju Island, Korea, pp 37–42

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dialogue agents 101: a beginner’s guide to critical ingredients for designing effective conversational systems;Natural Language Processing;2024-09-09

2. Leveraging large language models through natural language processing to provide interpretable machine learning predictions of mental deterioration in real time;Arabian Journal for Science and Engineering;2024-08-27

3. Behavior Alignment: A New Perspective of Evaluating LLM-based Conversational Recommendation Systems;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

4. Doing Personal LAPS: LLM-Augmented Dialogue Construction for Personalized Multi-Session Conversational Search;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3