An architecture-level analysis on deep learning models for low-impact computations

Author:

Li HengyiORCID,Wang Zhichen,Yue Xuebin,Wang Wenwen,Tomiyama Hiroyuki,Meng Lin

Abstract

AbstractDeep neural networks (DNNs) have made significant achievements in a wide variety of domains. For the deep learning tasks, multiple excellent hardware platforms provide efficient solutions, including graphics processing units (GPUs), central processing units (CPUs), field programmable gate arrays (FPGAs), and application-specific integrated circuit (ASIC). Nonetheless, CPUs outperform other solutions including GPUs in many cases for the inference workload of DNNs with the support of various techniques, such as the high-performance libraries being the basic building blocks for DNNs. Thus, CPUs have been a preferred choice for DNN inference applications, particularly in the low-latency demand scenarios. However, the DNN inference efficiency remains a critical issue, especially when low latency is required under conditions with limited hardware resources, such as embedded systems. At the same time, the hardware features have not been fully exploited for DNNs and there is much room for improvement. To this end, this paper conducts a series of experiments to make a thorough study for the inference workload of prominent state-of-the-art DNN architectures on a single-instruction-multiple-data (SIMD) CPU platform, as well as with widely applicable scopes for multiple hardware platforms. The study goes into depth in DNNs: the CPU kernel-instruction level performance characteristics of DNNs including branches, branch prediction misses, cache misses, etc, and the underlying convolutional computing mechanism at the SIMD level; The thorough layer-wise time consumption details with potential time-cost bottlenecks; And the exhaustive dynamic activation sparsity with exact details on the redundancy of DNNs. The research provides researchers with comprehensive and insightful details, as well as crucial target areas for optimising and improving the efficiency of DNNs at both the hardware and software levels.

Funder

japan society for the promotion of science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new paradigm in cigarette smoke detection: Rapid identification technique based on ATR-FTIR spectroscopy and GhostNet-α;Microchemical Journal;2024-10

2. Neuron Efficiency Index: An Empirical Method for Optimizing Parameters in Deep Learning;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Optimization and Deployment of DNNs for RISC-V-based Edge AI;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

4. Personalized Gait Generation Using Convolutional Neural Network for Lower Limb Rehabilitation Robots;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

5. YOLO-SM: A Lightweight Single-Class Multi-Deformation Object Detection Network;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3