A survey of feature selection methods for Gaussian mixture models and hidden Markov models
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
http://link.springer.com/content/pdf/10.1007/s10462-017-9581-3.pdf
Reference143 articles.
1. Adams S, Beling PA, Cogill R (2016) Feature selection for hidden Markov models and hidden semi-Markov models. IEEE Access 4:1642–1657
2. Aha DW, Bankert RL (1995) A comparative evaluation of sequential feature selection algorithms. In: Proceedings of the fifth international workshop on artificial intelligence and statistics
3. Allili MS, Bouguila N, Ziou D (2008) Finite general Gaussian mixture modeling and application to image and video foreground segmentation. J Electron Imaging 17(1):013,005–013,005
4. Allili MS, Ziou D, Bouguila N, Boutemedjet S (2010) Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection. IEEE Trans Circuits Syst Video Technol 20(10):1373–1377
5. Almuallim H, Dietterich TG (1991) Learning with many irrelevant features. In: AAAI, vol 91. Citeseer, pp 547–552
Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Soil ecological risk assessment of ten industrial areas in China based on the TRIAD and VIKOR methods;Ecological Indicators;2024-09
2. Assessment of NO3−, As, and F− background levels in groundwater bodies: A methodological review and case study utilizing sequential Gaussian simulation (SGS);Groundwater for Sustainable Development;2024-08
3. Combined Machine Learning and Molecular Dynamics Reveal Two States of Hydration of a Single Functional Group of Cationic Polymeric Brushes;Macromolecules;2024-05-22
4. AEOWOA: hybridizing whale optimization algorithm with artificial ecosystem-based optimization for optimal feature selection and global optimization;Evolving Systems;2024-05-15
5. Variable Selection for Hidden Markov Models with Continuous Variables and Missing Data;Journal of Classification;2024-01-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3