Self-organizing migrating algorithm: review, improvements and comparison

Author:

Skanderova LenkaORCID

Abstract

AbstractThe self-organizing migrating algorithm (SOMA) is a population-based meta-heuristic that belongs to swarm intelligence. In the last 20 years, we can observe two main streams in the publications. First, novel approaches contributing to the improvement of its performance. Second, solving the various optimization problems. Despite the different approaches and applications, there exists no work summarizing them. Therefore, this work reviews the research papers dealing with the principles and application of the SOMA. The second goal of this work is to provide additional information about the performance of the SOMA. This work presents the comparison of the selected algorithms. The experimental results indicate that the best-performing SOMAs provide competitive results comparing the recently published algorithms.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using LLM for Automatic Evolvement of Metaheuristics from Swarm Algorithm SOMA;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. Choice of benchmark optimization problems does matter;Swarm and Evolutionary Computation;2023-12

3. Efficient Time-Delay System Optimization with Auto-Configured Metaheuristics;2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2023-10-01

4. Exploring Adaptive Components of SOMA;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

5. Maximizing Efficiency: A Comparative Study of SOMA Algorithm Variants and Constraint Handling Methods for Time Delay System Optimization;Proceedings of the Companion Conference on Genetic and Evolutionary Computation;2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3