Reinforcement learning applications in environmental sustainability: a review

Author:

Zuccotto Maddalena,Castellini Alberto,Torre Davide La,Mola Lapo,Farinelli Alessandro

Abstract

AbstractEnvironmental sustainability is a worldwide key challenge attracting increasing attention due to climate change, pollution, and biodiversity decline. Reinforcement learning, initially employed in gaming contexts, has been recently applied to real-world domains, including the environmental sustainability realm, where uncertainty challenges strategy learning and adaptation. In this work, we survey the literature to identify the main applications of reinforcement learning in environmental sustainability and the predominant methods employed to address these challenges. We analyzed 181 papers and answered seven research questions, e.g., “How many academic studies have been published from 2003 to 2023 about RL for environmental sustainability?” and “What were the application domains and the methodologies used?”. Our analysis reveals an exponential growth in this field over the past two decades, with a rate of 0.42 in the number of publications (from 2 papers in 2007 to 53 in 2022), a strong interest in sustainability issues related to energy fields, and a preference for single-agent RL approaches to deal with sustainability. Finally, this work provides practitioners with a clear overview of the main challenges and open problems that should be tackled in future research.

Funder

Università degli Studi di Verona

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3