1. Balouek D, Carpen Amarie A, Charrier G, Desprez F, Jeannot E, Jeanvoine E, Lèbre A, Margery D, Niclausse N, Nussbaum L, Richard O, Pérez C, Quesnel F, Rohr C, Sarzyniec L (2013) Adding virtualization capabilities to the Grid’5000 testbed. In: Ivanov II, van Sinderen M, Leymann F, Shan T (eds) Cloud Computing and Services Science. Communications in Computer and Information Science. Springer, Switzerland, pp 3–20
2. Benjelloun I (2021) Impact du bruit d’annotation sur l’Évaluation de classifieurs. PhD thesis, Université de Lorraine (2021). Thèse de doctorat dirigée par Lamiroy, Bart et Koudou, Angelo Efoevi Informatique Université de Lorraine 2021, 2021LORR0267. http://www.theses.fr/2021LORR0267
3. Bhalgaonkar SA, Munot MV, Anuse AD (2022) Pruning for compression of visual pattern recognition networks: A survey from deep neural networks perspective. In: Gupta D, Goswami RS, Banerjee S, Tanveer M, Pachori RB (eds) Pattern Recognition and Data Analysis with Applications. Springer, Singapore, pp 675–687
4. Carreira-Perpinan M, Idelbayev Y (2018) "learning-compression" algorithms for neural net pruning, pp. 8532–8541. https://doi.org/10.1109/CVPR.2018.00890
5. Denil M, Shakibi B, Dinh L, Ranzato M, De Freitas N (2013) Predicting parameters in deep learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156. https://doi.org/10.5555/2999792.2999852