Abstract
AbstractAs one of the three pillars in computational intelligence, fuzzy systems are a powerful mathematical tool widely used for modelling nonlinear problems with uncertainties. Fuzzy systems take the form of linguistic IF-THEN fuzzy rules that are easy to understand for human. In this sense, fuzzy inference mechanisms have been developed to mimic human reasoning and decision-making. From a data analytic perspective, fuzzy systems provide an effective solution to build precise predictive models from imprecise data with great transparency and interpretability, thus facilitating a wide range of real-world applications. This paper presents a systematic review of modern methods for autonomously learning fuzzy systems from data, with an emphasis on the structure and parameter learning schemes of mainstream evolving, evolutionary, reinforcement learning-based fuzzy systems. The main purpose of this paper is to introduce the underlying concepts, underpinning methodologies, as well as outstanding performances of the state-of-the-art methods. It serves as a one-stop guide for readers learning the representative methodologies and foundations of fuzzy systems or who desire to apply fuzzy-based autonomous learning in other scientific disciplines and applied fields.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献