A new semi-local centrality for identifying influential nodes based on local average shortest path with extended neighborhood

Author:

Xiao Yi,Chen Yuan,Zhang Hongyan,Zhu Xinghui,Yang Yimin,Zhu Xiaoping

Abstract

AbstractQuantifying the importance of nodes in complex networks is known as the problem of identifying influential nodes and is considered a critical aspect in interacting with these networks. This problem has many applications such as controlling rumors, sickness spreading, and viral marketing, where its importance has been understood by the research society in the last decade. This paper proposes a new semi-local centrality to identify influential nodes in complex networks based on the theory of Local Average Shortest Path with extended Neighborhood concept (LASPN). LASPN focuses on a distributed technique to extract the subgraph associated with each node and apply the average shortest path theory to it. We use the extended neighborhood concept to find the nearest neighbors of each node with low complexity, where this can lead to high efficiency in dealing with large-scale networks. In addition to applying relative changes in the average shortest path, the proposed metric considers the importance of the node itself as well as its nearest neighbors in ranking the nodes. Evaluation of the proposed centrality metric has been done through numerical simulations on several real-world networks. The results based on Kendall's $$\tau$$ τ coefficient under the SIR infection spreading model show that LASPN improves the performance by 2.7% compared to the best available equivalent method.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3