Artificial intelligence techniques and their application in oil and gas industry
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Link
https://link.springer.com/content/pdf/10.1007/s10462-020-09935-1.pdf
Reference76 articles.
1. Accenture Consulting (2016) The 2016 oil and gas digital trends survey. Available from https://www.accenture.com/gb-en/insight-2016-upstream-oil-gas-digital-trends-survey
2. Agwu OE, Akpabio JU, Alabi SB, Dosunmu A (2018) Artificial intelligence techniques and their applications in drilling fluid engineering: a review. J Pet Sci Eng 167:300–315
3. Akande KO, Owolabi TO, Olatunji SO, AbdulRaheem A (2017) A hybrid particle swarm optimization and support vector regression model for modeling permeability prediction of hydrocarbon reservoir. J Pet Sci Eng 150:43–53
4. Al-Anazi AF, Gates ID (2012) Support vector regression to predict porosity and permeability: effect of sample size. Comput Geosci 39:64–76
5. Alhashem M (2019, November) Supervised machine learning in predicting multiphase flow regimes in horizontal pipes. In Abu Dhabi international petroleum exhibition & conference. Society of Petroleum Engineers
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantification of factors affecting fault sealing by using machine learning: Shuangtaizi fault anticline, southern margin of the Liaohe Western Depression, Northeastern China;Marine and Petroleum Geology;2024-10
2. Potential application of generative artificial intelligence and machine learning algorithm in oil and gas sector: Benefits and future prospects;Technology in Society;2024-09
3. Feasibility Study on the Applicability of Intelligent Well Completion;Processes;2024-07-26
4. Fast high-frequency porosity characterization from computer tomography images and deep learning;GEM - International Journal on Geomathematics;2024-06-10
5. Machine Learning-Based Research for Predicting Shale Gas Well Production;Symmetry;2024-05-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3