A chaotic based image encryption scheme using elliptic curve cryptography and genetic algorithm

Author:

Kumar Sanjay,Sharma Deepmala

Abstract

AbstractIn the era of digital communication and data security, image encryption plays a crucial role in safeguarding sensitive information. Protecting sensitive visual data from unauthorized access drives the pursuit of advanced image encryption methods. This paper proposes a novel approach to enhance image encryption by combining the power of a chaotic map, elliptic curve cryptography, and genetic algorithm. The chaotic map, specifically Arnold’s cat map, is employed to introduce chaos and randomness into the encryption process. The proposed image encryption process involves applying Arnold’s cat map for shuffling the pixel positions, followed by elliptic curve cryptography for encrypting the pixel values using public and private keys. Additionally, a genetic algorithm is employed to optimize the key generation process, enhancing the security of the encryption scheme. The combined utilization of these techniques aims to achieve a high level of confidentiality and robustness in image encryption. The algorithm underwent thorough analysis. It achieved a maximum entropy score of 7.99, indicating a high level of randomness and unpredictability in the encrypted data. Additionally, it exhibited near-zero correlation, which suggests strong resistance against statistical attacks. Moreover, the cryptographic range of possible keys was found to be $$2^{511}$$ 2 511 . This extensive key space makes the algorithm highly resilient against brute force attacks. It took only 0.5634 s to encrypt a moderately sized $$512\times 512$$ 512 × 512 pixel image with an 8-bit image on a standard desktop computer with a 2.3 GHz processor and 16 GB of RAM. The experimental findings confirm that the proposed approach is highly effective and efficient in safeguarding sensitive image data from unauthorized access and potential attacks. This scheme has the benefit of allowing us to protect our private image data while it’s being transmitted.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3